17047.png

Exceptional preservation of tracheal rings in a glyptodont mammal from the Late Pleistocene of Argentina

MARTÍN ZAMORANO

Exceptionally well-preserved material from a fossil mammal is presented. For the first time, several fragments of tracheal rings and cricoid cartilage assigned to Panochthus sp. (Xenarthra; Glyptodontidae) from the Late Pleistocene of Argentina are described in detail and figured. In this contribution, in addition to a meticulous description, a tracheal ring was reconstructed and compared to tracheal rings of domestic and wild mammals. As a result, among domestic mammals it is similar to those of Sus scrofa domestica (domestic pig), and among wild mammals to those of Zalophus californianus (California sea lion). Tracheal rings of fossil vertebrates have been recognized in birds (Cariamiformes and Anseriformes) and other dinosaurs (Theropoda). This is likely the first report of tracheal rings in a fossil mammal; future comparisons with extant xenarthrans could provide information on the paleobiological implications of this structure in glyptodonts, and allow making inferences about other fossil mammals.

Introduction

The trachea of mammals is a relatively flexible cartilaginous and membranous tube that extends from the cricoid cartilage of the larynx to the middle mediastinum, where it bifurcates into the main bronchi (König and Liebich 2005). The framework of the trachea is formed by C-shaped plates of hyaline cartilage (“tracheal rings”). These vary in shape according to the species and in some cases according to the location on the trachea. The number also varies according to the species (Sisson and Grossman 1982). The cartilaginous rings provide the tube: (i) some rigidity, otherwise it would collapse as the lungs expand; (ii) some expansion, to be able to accommodate any increase in air volume, by means of the flexibility of the hyaline cartilage, and the dorsal incompleteness of the rings; and (iii) flexibility and extensibility, to be able to follow the movements of the head, neck and larynx (Sisson and Grossman 1982; Powell et al. 2010). Tracheal cartilages originate from the splanchnic mesoderm and form the true tracheal skeleton (Acuña Navas et al. 2010).

Xenarthrans are a particular group of mammals, characteristic of the Neotropical Region, widely represented in the South American fossil record, both in temporal extension and frequency of records (Scillato-Yané 1977; Paula Couto 1979). The family Glyptodontidae is a group of armored xenarthrans, whose representatives reached large to very large sizes (Scillato-Yané and Carlini 1998; Fariña 2001; Zamorano et al. 2014a), even exceeding 2300 kg (Soibelzon et al. 2012), and are recorded from the middle Eocene to the early Holocene (Fernicola 2008; Zamorano 2013; Zurita et al. 2016). From an evolutionary stand point, the evidence strongly suggests that glyptodonts are a monophyletic group (see Porpino et al. 2014; Zamorano 2019; among others).

Panochthus Burmeister, 1866 is one of the most abundant and diversified glyptodontids of the South American Pleistocene, as well as one of the largest Cingulata (see Fariña 2001; Zamorano et al. 2014a). Likewise, it is also among the most abundantly recorded groups in the Pampean region (Scillato-Yané et al. 1995; Cione et al. 1999; Zamorano 2012; Zamorano et al. 2014b). Together with Glyptodon Owen, 1839 they are the most widely distributed glyptodontids in South America, both latitudinally and altitudinally (Zurita et al. 2009, 2016; Zamorano 2012, 2019; Zamorano and Jara Almonte 2018; Zamorano and Oliva in press). In this contribution, several fragments of tracheal rings and the cricoid cartilage assigned to Panochthus sp. are described and figured. In this way, I intend to contribute to the understanding of these cartilages, which allow the indispensable entry of oxygen into a mammal body, an issue that is poorly studied in the extant mammals and seemingly never studied in extinct forms.

Institutional abbreviations.—MHM, Museo Histórico Muni­cipal “Alfredo Enrique Múlgura”, General Belgrano, Province of B1uenos Aires, Argentina.

Geographic and stratigraphic setting

The fossil material was found on the right margin of the Sa­lado River, near the city of General Belgrano, Buenos Aires, Argentina (35°45’5.52” S, 58°37’35.96” W; Fig. 1). The remains were collected in sediments of the Luján Formation dated between ca 14 and 12 ky (Late Pleistocene), in the transitional limit between La Chumbiada Member (ca 14 to 12 ky, Lujanian Stage/Age sensu Cione and Tonni 1999, 2001; Cione et al. 2015) and Gorch Member (ca 11.5 to 5 ky sensu Fucks et al. 2015), downstream the Paraje La Chumbiada, near Estancia La Invernada (Fig. 1). In Paraje La Chumbiada, Scanferla et al. (2013) recognized a gray to black clayey deposit interpreted as a paleolagoon, in which several remains of fossil mammals were collected (Hippidion principale [Lund, 1842], Smilodon populator Lund, 1842, Doedicurus clavicaudatus [Owen, 1847], and Megatherium americanum Cuvier, 1796, among others), which corroborated the age of the level.

In general, the material recovered in the area where the remains studied here were collected are exceptionally preserved. Fossils of mammals recovered in this area contain large amounts of preserved collagen (Scanferla et al. 2013; Delsuc et al. 2016; Mitchell et al. 2016), and mummified exoskeletons of insects were found (Ramirez and Michat 2016). The high percentage of collagen preserved is a rare condition with respect to the rest of the Pleistocene deposits of the Pampas region (Scanferla et al. 2013), and this is probably what allowed the exceptional preservation of the cartilage studied here.


17769.png

Fig. 1. A. Geographic location of studied area within Buenos Aires Province, Argentina (inset) near General Belgrano city, Los Tobianos Farm (35°45’5.52” S, 58°37’35.96” W), asterisk indicates where the studied specimen was discovered. B. Photo of the outcroup along the Salado River right bank, the site where Panochthus sp. (MHM-P 87) was found.

Material and methods

The fossil specimen described here was compared with tracheal rings and cricoid cartilage of domestic mammals, whose shape has been studied in detail, e.g., Bos primigenius taurus Linnaeus, 1758 (Artiodactyla, Bovidae), Canis lupus familiaris Linnaeus, 1758 (Carnivora, Canidae), Capra aegagrus hircus Linnaeus, 1758 (Artiodactyla, Bovidae), Equus ferus caballus (Linnaeus, 1758) (Perissodactyla, Equidae), Felis silvestris catus (Linnaeus, 1758) (Carnivora, Felidae), Ovis orientalis aries Linnaeus, 1758 (Artiodactyla, Bovidae), and Sus scrofa domestica Linnaeus, 1758 (Artiodactyla, Suidae) (Barone 1984; Dabanoğlu et al. 2001; Climent et al. 2005; König and Liebich 2005; Martínez and Salvador 2010; Powell et al. 2010). I also used those wild mammals for comparison, but only through literature, e.g., Cerdocyon thous (Linnaeus, 1766) (Carnivora, Canidae), Didelphis sp. (Didelphimorphia, Didelphidae), Hyd­ro­choerus hydrochaeris Linnaeus, 1766 (Rodentia, Cavi­idae), Miro­unga angustirostris Gill, 1866 (Carnivora, Pho­cidae), Odo­benus rosmarus (Linnaeus, 1758) (Carnivora, Odo­benidae), Ursus maritimus Phipps, 1744 (Carnivora, Ursidae), Phoca vitu­lina Linnaeus, 1758 (Carnivora, Phocidae), and Zalo­phus cali­fornianus Lesson, 1828 (Carnivora, Otariidae) (Soko­lov et al. 1968; Harrison and Denny 1985; Bertassoli and Santos 2013; Moore et al. 2014; Junior et al. 2016; Moreto et al. 2017).

Systematic palaeontology

Family Glyptodontidae

Genus Panochthus

Type species: Glyptodon tuberculatus Owen, 1845; Middle Pleistocene–late Pleistocene) from the southern and center-northern areas of Argentina, Uruguay, south and central areas of Bolivia and southeastern region of Brazil.

Panochthus sp.

Material.—MHM-P 87, twenty-three fragments of tracheal rings, including fragments that probably belong to the crioid cartilage. The specimen consists of part of the skull (badly preserved), mandibular rami, postcranial bones (both humeri, radii-­ulnae, both femurs, tibiae-fibulae, several elements of the carpus and tarsus, thoracic and lumbar vertebrae, cervical ribs) and the almost complete dorsal carapace. Because of the exceptional preservation of this material, fragments of tracheal rings, the crycoid cartilage and, some elements of the hyoid apparatus could be identified and were published by Zamorano et al. (2018). Late Pleistocene of General Belgrano, Buenos Aires, Argentina (35°45’5.52” S, 58°37’35.96” W) (Fig. 1). The remains were collected in sediments of the Luján Formation dated between ca 14 and 12 ky.

Description.—Tracheal cartilages are mostly small and fragile fragments; their thickness does not exceed 3 mm. Twenty-three fragments of these tracheal rings were found, twelve of them belong exclusively to lateral sectors 19–54 mm in length and 6–8 mm in width. The three longest of these last fragments are fully curved (none of them cover the lateral sector completely), whereas the other nine are almost straight (Fig. 2A1). Eight fragments belong to ventral portions of the rings; in this category are also included fragments of fused ventral and lateral portions (Fig. 2A2), three of them, the largest ones, probably belong to the cricoid cartilage (this latter is similar in shape to a tracheal ring, although larger; Drake et al. 2010) (Fig. 2A3). A tracheal ring was reconstructed; it is 80 mm high and 60 mm wide. Its diameter occupies approximately 15% of the skull height (without the mandible) (see Fig. 3B). The tracheal rings of Panochthus sp. would belong to a cylindrical trachea, slightly flattened on the dorsal and ventral sides, the free ends of each ring (that is, on its dorsal side) overlap, the left one above the right one (Fig. 3C).

17776.png

Fig. 2. Tracheal cartilages of glyptodont mammal Panochthus sp. (MHM-P 87) from the Late Pleistocene of General Belgrano, Argentina, in ventral views. Lateral (A1), ventral and ventro-lateral (A2) portions, fragment of cricoid cartilage (A3) in ventral views.


17785.png

Fig. 3. Cartilages present in the neck of glyptodont mammal Panochthus sp. compared with Recent California sea lion and domestic pig. A. Thyroid, cricoid, and tracheal cartilages in ventral view; generalized mammal (A1), Panochthus sp. (A2). B. Explanatory drawing of the Panochthus sp. skull in lateral view, with hyoid apparatus and tracheal rings. C–E. Tracheal rings in anterior view. C. Panochthus sp. (MHM-P 87). D. California sea lion Zalophus californianus Lesson, 1828. E. Domestic pig Sus scrofa domestica Linnaeus, 1758. A, modified from Martínez and Turpín 2015; D, E, modified from Moore et al. 2014. Abbreviations: cc, cricoid cartilage; hy, hyoid apparatus; mr, mandibular rami; sk, skull; tc, thyroid cartilage; tr, tracheal rings.


Remarks.—Among domestic mammals, it is similar to those of Sus scrofa domestica (Fig. 3E), whereas among wild mammals it is similar to those of Zalophus californianus (Fig. 3D). Tracheal rings of Sus scrofa scrofa, a wild subspecies similar to its conspecific, are also similar, but those of Zalophus californianus resemble even more those of Panochthus sp., since these rings are flattened dorsally and ventrally, and not as in cross section as those of S. scrofa scrofa. Noteworthy, in S. scrofa domestica and Z. californianus the shape of the rings is constant along the entire trachea, as well as the overlapping of their free ends (Moreto et al. 2017). It has to be taken into account that the free ends of the tracheal cartilage of living mammals (in this case S. scrofa domestica and Z. californianus) are practically in contact, because the tracheal muscle holds them together, whereas in the fossils of Panochthus sp. these free ends are more widely separated.

Concluding remarks

During inspiration the air pressure is lower in the trachea than the atmospheric pressure, and without the tracheal rings, the trachea would collapse (Villee et al. 1971). For this reason the tracheal rings are totally indispensable for animals with lung breathing. In mammals these rings have the only basic and fundamental function of maintaining an open channel that allows the circulation of air from the larynx to the lungs and vice versa. Moore et al. (2014) studied the structure and rigidity of the tracheae of marine mammals and observed how the flow of air circulating through the tracheae behaved during diving. The rigidity of the trachea, deduced from the shape of the rings, is expressed in the capacity not to collapse. For some authors, this rigidity is an adaptation of marine mammals (Scholander 1940; Olsen et al. 1969; Kooyman and Sinnett 1979; Kooyman and Cornell 1981). However, Denison et al. (1971), Bostrom et al. (2008), and Moore et al. (2014) stated that it is similar to the rigidity of the tracheae of terrestrial mammals. In this sense, Moore et al. (2014) concluded that Sus scrofa (S. scrofas crofa and S. scrofa domestica) is the terrestrial mammal most similar to marine mammals. In turn, Harrison and Denny (1985) suggested that the influence of the shape and size of tracheal rings has to be taken into account on the running speed reached by mammals. To test this hypothesis, they used the relationship between the area occupied by the glottis lumen, the tracheal lumen (generated by the tracheal ring) and the body mass. In fossil mammals, these relationships cannot be calculated as a whole. Although the body mass has been estimated in several species of different groups (Fariña et al. 1998; Seebabher 2001; Reguero et al. 2010; Cassini et al. 2012; Toledo et al. 2014) the surface of the glottis lumen is unknown, and as for the lumen of the trachea, the present contribution is the first to report, figures and describes a tracheal ring of a fossil mammal. Tracheal rings have only been published in extinct birds: Llallawavis scagliai Degrange, Tambussi, Taglioretti, Dondas, and Scaglia, 2015 (Cariamiformes, Phorusrhacidae) (Degrange et al. 2015) and Vegavis iaai Clarke, Tambussi, Noriega, Erickson, and Ket­cham, 2005 (Anseriformes, Vegaviidae) (Clarke et al. 2016); and other dinosaurs: Scipionyx samniticus Dal Sasso and Sign­ore, 1998 (Theropoda, Coelurosauria) (Dal Sasso and Sig­nore 1998).

In the literature, data on cricoid cartilage and tracheal rings of living xenarthrans are very scarce. Naples (1999) states that the cricoid cartilage is partially ossified in the skull of the giant anteater Myrmecophaga tridactyla Linnaeus, 1758, and that small movements between this and the back of the tracheal rings are likely; according to Borges et al. (2017), in M. tridactyla the trachea begins at the sixth cervical. For the folivores, Gilmore et al. (2008) report the differences in length of the trachea between the tree sloths, Choloepus Illiger, 1811, in which it is extremely short and Bradypus Linnaeus, 1758, in which it is very long (25–28 cm) and would be probably correlated with the wide range of movement between the neck and the head.

Thanks to exceptional preservation conditions, three cartilaginous structures of the neck of a glyptodontid referred to the genus Panochthus are preserved, corresponding to a first record in an extinct mammal. Two of these structures belong to the laryngeal zone, the thyroid cartilage described in Zamorano et al. (2018) and the cricoid cartilage, and the third originates in the tracheal zone, the cartilages of the tracheal rings; the last two structures are presented in this communication (Figs. 2, 3A2).

In summary, the tracheal rings of Panochthus sp. corresponds to a cylindrical trachea, slightly flattened on the dorsal and ventral sides, the free ends of each ring overlap, the left one above the right one. Similar to those of Sus scrofa domestica and Zalophus californianus, but those of Z. californianus resemble even more those of Panochthus sp., since these rings are flattened dorsally and ventrally.

There are currently no other studies on tracheal rings in extinct mammals and in extant xenartrans; similar studies in extant xenartrans would provide valuable information on their adaptations. Future, more detailed analyses of the MHM-P 87, and possibly new findings of exceptionally preserved fossils could provide information on the paleobiological implications of this structure in glyptodonts. Likewise, these new data on the trachea and its adaptations in glyptodonts would allow to make inferences in other fossil mammals.


Acknowledgments.—I thank Álvaro Mones ( Augsburg, Germany), Hernán Za­morano (Río Turbio, Argentina), Ricardo Bonini (CONICET, Buenos Aires, Argentina), Néstor Toledo (CONICET), and Agustín Abba (Centro de Estudios Parasitológicos y de Vectores, La Plata, Argentina) for bibliographic support, María Julia Sanchez Rondini (La Plata, Argentina), Juan Ramón Artigas (La Plata, Argentina), and Cecilia Krmpotic (CONICET) for taking photographs of the material, Laureano Raúl González Ruíz (CONICET) for reading and comments on the manuscript, Juan Cruz González (La Plata, Argentina) for the drawings. Leandro M. Pérez, an anonymous reviewer, and editors are thanked for comments and suggestions that helped to improve the manuscript.

References

Acuña Navas, M.J., Arce Rodríguez, E., Baquero Barcenas, A.M., Bonilla Mora, W., Coto Chinchilla, K., Guerrero Gamboa, L., Gutiérrez Porras, M., Jiménez Delgado, J., Leitón Villagra, C., Madrigal Rojas, J.P., Monge Carvajal, C., Morales González, F., Núñez Delgado, N., Penón Portmann, M., Quirós Castro, A.G., Rivera Calderón, C., and Vargas Sanabria, M. 2010. Embriología del desarrollo de los bronquios y el parénquima pulmonar. Medicina Legal de Costa Rica 27 (7): 61–74.

Barone, R. 1984. Anatomie Comparée des Mammifères Domestiques. Tome III. Splachnologie I. Appareil digestif. Appareil respiratoire. 879 pp. Vigot, Paris.

Bertassoli, B.M. and Santos, A.C. 2013. Morfologia da laringe e traqueia de gambás Didelphis sp.). Ciencia Animal Brasileira 14: 222–229. Crossref

Borges, N.C., Nardotto, J.R., Oliveira, R.S., Rüncos, L.H., Ribeiro, R.G., and Bogoevich, A.M. 2017. Anatomy description of cervical region and hyoid apparatus in living giant anteaters Myrmecophaga tridactyla Linnaeus, 1758. Pesquisa Veterinária Brasileira 37: 1345–1351. Crossref

Bostrom, B.L., Fahlman, A., and Jones, D.R. 2008. Tracheal compression delays alveolar collapse during deep diving in marine mammals. Respiratory Physiology, and Neurobiology 161: 298–305. Crossref

Burmeister, G. 1866. Lista de los mamíferos fósiles del terreno diluviano. Anales del Museo Público de Buenos Aires 1: 121–232.

Cassini, G.H., Vizcaíno, S.F., and Bargo, M.S. 2012. Body mass estimation in Early Miocene native South American unulates: a predictive equation based on 3D lgandmarks. Journal of Zoology 287: 53–64. Crossref

Cione, A.L. and Tonni, E.P. 1999. Biostratigraphy and chronological scale of upper-most Cenozoic in the Pampean Area, Argentina. In: J. Rabassa and M. Salemme (eds.), Quaternary of South America and Antarctic Peninsula 12: 23–51.

Cione, A.L., and Tonni, E.P. 2001. Correlation of Pliocene to Holocene southern South American and European vertebrate-bearing units. In: L. Rook and D. Torre (eds.), Neogene and Quaternary continental stratigraphy and mammal evolution. Bollettino della Societá Paleontologica Italiana 40: 167–173.

Cione, A.L., Gasparini, G.M., Soibelzon, E., Soibelzon, L. H., and Tonni, E.P. 2015. The GABI in southern South America. In: A.L. Cione, G.M. Gasparini, E. Soibelzon, L.H. Soibelzon, and E.P. Tonni (eds.), The Great American Biotic Interchange. Springer Netherlands 1: 71–96. Crossref

Cione, A.L., Tonni, E.P., Bond, M., Carlini, A.A., Pardiñas, U.F.J., Scillato-­Yané, G.J., Verzi, D., and Vucetich, M.G. 1999. Ocurrence charts of Pleistocene mammals in the Pampean area, eastern Argentina. In: E.P. Tonni and A.L. Cione (eds.), Quaternary of South America and Antarctic Peninsula, Special Volume, Quaternary Vertebrate Paleontology in South America 12: 53–73.

Clarke, J.A., Chatterjee, S., Li, Z., Riede, T., Agnolin, F., Goller, F., and Novas, F.E. 2016. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538: 502–505. Crossref

Clarke, J.A., Tambussi, C.P., Noriega, J.I., Erickson, G.M., and Ketcham, R.A. 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433: 305–308.

Climent, S., Sarasa, M., Muniesa, P., and Latorre, R. 2005. Manual de anatomía y embriología de los animales domésticos: cabeza: aparato respiratorio: aparato digestivo: aparato urogenital. 433 pp. Editorial Acribia, Zaragoza.

Cuvier, G. 1796. Notice sur le squelette d’une très grande espèce de quadrupède inconnue jusqu’à présent, trouvé au Paraquay, et déposé au cabinet d’histoire naturelle de Madrid. Magasin encyclopédique, ou Journal des Sciences, des Lettres et des Arts 1: 303–310.

Dabanoğlu, I., Öcal, M.K., and Kara, M.E. 2001. A quantitative study on the trachea of the dog. Anatomia, Histologia, Embryologia 30: 57–59. Crossref

Denison, D.M., Warrell, D.A., and J.B. West. 1971. Airway structure and alveolar emptying in the lungs of sea lions and dogs. Respiratory Physiology and Neurobiology 13: 253–260. Crossref

Dal Sasso, C. and Signore, M. 1998. Exceptional soft-tissue preservation in a theropod dinosaur from Italy. Nature 392: 383–387. Crossref

Degrange, F.J., Tambussi, C.P., Taglioretti, M.L., Dondas, A., and Scaglia, F.A. 2015. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birds. Journal of Vertebrate Paleontology 35: e912656. Crossref

Delsuc, F., Gibb, G.C., Kuch, M., Billet, G., Hautier, L., Southon, J., Rouillard, J.M., Fernicola, J.C., Vizcaíno S.F., MacPhee R.D., and Poinar, H.N. 2016. The phylogenetic affinities of the extinct glyptodonts. Current Biology 26: R155–R156. Crossref

Drake, R.L., Vogl, A.W., and Mitchell, A.W. 2010. Gray’s Anatomy for Students. 2nd ed. 1062 pp. Churchill Livingstone/Elsevier, Philadelphia.

Fariña, R.A. 2001. Física y Matemáticas para reconstruir la vida en el pasado. Actas de Fisiología 6: 45–70.

Fariña, R.A., Vizcaíno, S.F., and Bargo, M.S. 1998. Body mass estimations in Lujanian (late Pleistocene–early Holocene of South America) mammal megafauna. Mastozoología Neotropiocal 5: 87–108.

Fernicola, J.C. 2008. Nuevos aportes para la sistemática de los Glyptodontia Ameghino 1889 (Mammalia, Xenarthra, Cingulata). Ameghinana 45: 553–574.

Fucks, E., Pisano, M.F., Huarte, R., Di Lello, C.V. Mari, F., and Carbonari, J. 2015. Stratigraphy of the fluvial deposits of the Salado river basin, Buenos Aires province: lithology, chronology and paleoclimate. Journal of South American Earth Sciences 60: 129–139. Crossref

Gill, T. 1866. Prodome of a monograph of the Pinnipedia. Proceedings of the Essex Institute 5: 3–13.

Gilmore, D., Duarte, D.F., Costa, and C.P. 2008. The physiology of two- and three-toed sloths. In: S.F. Vizcaino and W.J. Loughry (eds.), The Biology of the Xenarthra, 130–142. University Press of Florida, Gainesville.

Harrison, D.F.N., and Denny., S. 1985. The possible influence of laryngeal and tracheal size on the running speed of mammals. Acta Oto-Laryngologica 9: 229–235. Crossref

Illiger, J.K.W. 1811. Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis. 301 pp. C. Salfeld, Berolini. Crossref

Junior, P.S., Carvalho, N.C., Mattos, K., Anjos, B.L., and Santos, A.L. 2016. Morfologia a laringe em Cerdocyon thous (Linnaeus, 1766). Pesquisa Veterinária Brasileira 36: 45–54. Crossref

König, H.E. and Liebich, H.G. 2005. Anatomía de los animales domésticos: texto y atlas en color. Tomo 2: Órganos: sistema circulatorio y sistema nervioso. 385 pp. Editorial Médica Panamericana. Buenos Aires.

Kooyman, G.L. and Cornell, L.H. 1981. Flow properties of expiration and inspiration in a rained bottlenose porpoise. Physiological Zoology 54: 55–61. Crossref

Kooyman, G.L. and Sinnett, E.E. 1979. Mechanical properties of the harbor porpoise lung, Phocoena phocoena. Respiratory Physiology and Neurobiology 36: 287–300. Crossref

Lesson, R.P. 1828. Cetaces. Vol. 1 of Complément des oeuvres de Buffon ou Histoire Naturelle des animaux rares découverts par les naturalistes et les voyageurs depuis la mort de Buffon. 442 pp. Baudouin frères, Paris.

Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. 824 pp. Laurentius Salvius, Holmiae. Crossref

Linnaeus, C. 1766. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. 12th ed. 532 pp. Laurentius Salvius, Holmiae. Crossref

Lund, P.W. 1842. Blik paa Brasiliens Dyreverden för sidste jordomvaeltning. Fjerde Afhandling: Fortsaettelse af Pattedyrene. Lagoa Santa d. 30 Januar 1841. Copenhague. K. Danske videnskabernes Selskabs naturvidenskapelige og mathematiske Afhandlinger 9: 137–208.

Martínez, M.E.G. and Salvador, C.R. 2010. Anatomía Veterinaria. 2. Estudio de la tráquea y del pulmón. Morfología y lobulaciones pulmonares. Rediuca 2: 21–28.

Martínez, R.A. and Turpín, J.M.I. 2015. Embriología y anatomía de la tráquea y el esófago. In: SEORL-PCF (eds.), Libro Virtual de formación en Otorrinolaringología 134: 1846–1858.

Mitchell, K.J., Scanferla, A., Soibelzon, E., Bonini, R., Ochoa, J., and Cooper, A. 2016. Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos. Molecular Ecology 25: 3499–3508. Crossref

Moore, C., Moore, M, Trumble, S., Niemeyer, M., Lentell, B., McLellan, W., Sostidis, A., and Fahlman, A. 2014. A comparative analysis of marine mammal tracheas. Journal of Experimental Biology 217: 1154–1166. Crossref

Moreto, A.O., Oliveira, F.D., Bertassoli, B.M., and Neto, A.C.A. 2017. Morfologia comparada do aparelho respiratório de capivaras (Hydrochoerus hydrochoeris). Pesquisa Veterinária Brasileira 37: 69–277.

Naples, V.L. 1999. Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla). Journal of Zoology 249: 19–41. Crossref

Olsen, C.R., Hale, F.C., and Elsne, R. 1969. Mechanics of ventilation in the pilot whale. Respiratory Physiology and Neurobiology 7: 137–149. Crossref

Owen, R. 1839. Note on the Glyptodon. In: W. Parish (ed.) Buenos Ayres, and the Provinces of the Rio de la Plata: Their Present State, Trade, and Debt, 1–178. John Murray, London.

Owen, R. 1845. Descriptive and Illustrated Catalogue of the Fossil Organic Remains of Mammalia and Aves Contained in the Museum of the Royal College of Surgeons of London. 391 pp. R. & J.E. Taylor, London.

Owen, R. 1847. Notice of some fossil Mammalia of South America. In: Report of the 16th Meeting of the British Association for the Advancement of Science, 65–67. Southampton.

Paula Couto, J.C. 1979. Tratado de Paleomastozoología. 590 pp. Academia Brazileira de Ciencias, Rio de Janeiro.

Phipps, C.J. 1774. A Voyage Towards the North Pole. 253 pp. J. Nourse, London.

Porpino, K.O., Fernicola, J.C., Cruz, L.E., and Bergqvist, L.P. 2014. The intertropical Brazilian species of Panochthus (Xenarthra, Cingulata, Glyptodontoidea): a reappraisal of their taxonomy and phylogenetic affinities. Journal of Vertebrate Paleontology 34: 1165–1179. Crossref

Powell, R.J., Du Toit, N., Burden, F.A., and Dixon, P.M. 2010. Morphological study of tracheal shape in donkeys with and without tracheal obstruction. Equine Veterinary Journal 4: 136–141. Crossref

Ramírez, L.C., and Michat, M.C. 2016. First fossil predaceous diving beetle from the late Pleistocene of Buenos Aires, Argentina. Ameghiniana 53: 512–517. Crossref

Reguero, M.A., Candela, A.M., and Cassini, G.H. 2010. Hypsodonty and body size in rodent-like notoungulate. In: R.H. Madden, A.A., Carlini, M.G., Vucetich, and R.F. Kay (eds.), The Paleontology of Gran Barranca 1: 362–377. Cambridge University Press, Cambridge.

Scanferla, A., Bonini, R., Pomi, L., Fucks, E., and Molinari, A. 2013. New late pleistocene megafaun assemblage with well-supported chronolog1y from the Pampas of southern South America. Quaternary International 307: 97–161. Crossref

Scholander, P.F. 1940. Experimental investigations on the respiratory function in diving ammals and birds. Hvalradets Skrifter 22: 1–131.

Scillato-Yané, G.J. 1977. Sur quelques Glyptodontidae nouveaux (Mammalia, Edentata) du Déséadien (Oligocene inferieur) de Patagonie (Argentine). Bulletin du Muséum National d’Histoire Naturelle 64: 249–262.

Scillato-Yané, G.J., and Carlini, A.A. 1998. Un Gigantesco Gliptodonte en los Alrededores de la Ciudad de La Plata. Revista del Museo de La Plata 11 (2): 45–48.

Scillato-Yané, G.J., Carlini, A.A., Vizcaíno, S.F., and Ortiz-Jaureguiza, E. 1995. Xenarthra. In: M.T. Alberdi, E.P. Tonni, and G. Leone (eds.), Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años. Un ensayo de correlación con el Mediterraneo Occidenta. Monografías de la CSIC, 183–209. Madrid.

Seebacher, F. 2001. A new method to calculate allometric lengthmass relationships of dinosaurs. Journal of Vertebrate Paleontology 21: 51–60. Crossref

Sisson, S. and Grossman, J.D. 1982. Anatomía de los animales domésticos: 1a parte. 1022 pp. Salvat, Barcelona.

Soibelzon, L.H., Zamorano, M., Scillato-Yané, G.J., Piazza, D., Rodríguez, S., Soibelzon, E., Tonni, E.P., San Cristóbal, J., and Beilinson, E. 2012. Un Glyptodontidae de gran tamaño en el Holoceno temprano de la región Pampeana. Revista Brasileira de Paleontologia 15: 113–122. Crossref

Sokolov, A.S., Kosygin, G.M., and Shustov, A.P. 1968. Structure of lungs and trachea of Bering Sea pinnipeds [in Rusian]. In: V.A. Arsenev and K.I. Panin (eds.), Lastonogie severnoj časti Tihogo okeana, 250–262. Izdatel’stvo Piŝevaâ Promyšlennost, Moskva.

Toledo, N., Cassini, G.H., Vizcaíno, S.F., and Bargo, M.S. 2014. Mass estimation in Santacrucian sloths from the Early Miocene Santa Cruz Formation of Patagonia, Argentina. Acta Palaeontologica Polonica 59: 267–280.

Villee, C.A., Dethier, V.G., and Harner, G. 1971. Biological Principles and Processes. 166 pp. Saunders, Philadelphia.

Zamorano, M. 2012. Los Panochthini (Xenarthra: Glyptodontidae): Siste­mática y evolución. 269 pp. Tesis Doctoral, Universidad Nacional de La Plata, La Plata.

Zamorano, M. 2013. Diagnosis y nueva descripcion de Prpanochthus bulli­fer (Burmeister) (Xenarthra, Glyptodontidae). Consideraciones bioestratigráficas y cronológicas de su procedencia. Spanish Journal of Palaeontology 28: 283–292.

Zamorano, M. 2019. Análisis filogenético de Xenatros (Mammalia), basados en elementos óseos del aparato hioides. Aspectos sobre la monofilia de gliptodóntidos. Revista Brasileira de Paleontologia 22: 53–66. Crossref

Zamorano, M. and Jara Almonte, G. 2018. Primer registro fehaciente de Panochthus (Xenarthra; Cingulata; Glyptodontidae) para Perú. Acta Geológica Lilloana 30: 23–30. Crossref

Zamorano, M. and Oliva, C. (in press). Materiales de Panochthus Burmeister (Xenarthra; Cingulata; Glyptodontidae) registrados a mayores altitudes (msnm). Actas de las VII Jornadas Paleontológicas Regionales.

Zamorano, M., Scillato-Yané, G.J., and Zurita, A.E. 2014a. Revisión del genero Panochthus (Xenarthra, Glyptodontidae). Revista del Museo de La Plata 14: 1–46.

Zamorano, M., Scillato-Yané, G.J., Soibelzon, E., Soibelzon, L.H., Bonini, R., and Rodriguez, S. 2018. Hyoid apparatus of Panochthus sp. (Xenarthra; Glyptodontidae) from the Late Pleistocene of the Pampean region (Argentina). Comparative description and muscle reconstruction. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 288: 205–219. Crossref

Zamorano, M., Taglioretti, M., Zurita, A.E., Scillato-Yané, G.J., and Scaglia, F. 2014b. El registro más antiguo de Panochthus (Xenarthra, Glyptodontidae). Estudios Geológicos 70: e004. Crossref

Zurita, A.E., Miño Boilini, A.R., Soibelzon, E., Carlini, A.A., and Paredes Ríos, F. 2009. The diversity of Xenarthra in the Tarija valley (Bolivia): systematic, biostratigraphic and paleobiogeographic aspects of a particular assemblage. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 251/252: 225–237. Crossref

Zurita, A.E., Scillato-Yané, G.J., Ciancio, M., Zamorano, M., and González Ruiz, L.R. 2016. Los Glyptodontidae (Mammalia, Xenarthra): historia biogeográfica evolutiva de un grupo particular de mamíferos acorazados. In: F.L Agnolin, G.L. Lio, F. Brisson Egli, N.R. Chimento, and F.E. Novas (eds.), Historia evolutiva y paleobiogeográfica de los vertebrados de América del Sur, 249–262. Museo Argentino de Ciencias Naturales, Ciudad autónoma de Buenos Aires.


Martín Zamorano [marzamorano@fcnym.unlp.edu.ar], División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. CONICET. Paseo del Bosque s/n, (1900), La Plata, Buenos Aires, Argentina.


Received 16 July 2019, accepted 27 September, available online 7 February 2020.


Copyright © 2020 M. Zamorano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Acta Palaeontol. Pol. 65 (1): 29–34, 2020

https://doi.org/10.4202/app.00654.2019