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Palaeobiogeographical implications of the first fossil 
wood flora from the Jurassic of Turkey
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Akkemik, Ü., Kandemir, R., Philippe, M., Güngör, Y., and Köroğlu, F. 2022. Palaeobiogeographical implications of the 
first fossil wood flora from the Jurassic of Turkey. Acta Palaeontologica Polonica 67 (3): 745–766.

We describe Jurassic fossilized woods from the Gümüşhane and Erzurum regions of Turkey that represent the eastern 
Sakarya Zone (eSZ) terrestrial biota. We collected 27 fossil wood fragments in total. All 27 fossil wood specimens rep-
resent coniferous trees. We assigned ten specimens to Agathoxylon sp. type 1, fourteen to Agathoxylon sp. type 2, two to 
Protelicoxylon asiaticum and one to Xenoxylon hopeiense. Middle Jurassic woods are represented by Agathoxylon only 
what does not allow for any palaeobiogeographic inferences. The Late Jurassic wood flora evidences a continuity of 
Gondwanan eSZ terrestrial areas with the Laurasian ones. The occurrence of Xenoxylon within this Late Jurassic wood 
flora suggests an abundant water supply under a relatively cool/humid climate. Overall, both floras show important 
similarities to contemporary fossil wood flora from Iran and, to a lesser extent, to those from Georgia.
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Introduction
The Lower–Middle Jurassic volcano-sedimentary succes
sions (Olurdere Formation in Olur region and Şenköy 
Formation in Gümüşhane region, NE Turkey) of the eastern 
Sakarya Zone (eSZ) (Yilmaz 1985; Kandemir 2004) are 
critical for understanding the tectonics, palaeogeography, 
and palaeobiogeography of eSZ, which at that time was 
located at the northern rim of the Neotethys Ocean. The 
fossil wood fragments found in the eSZ could be considered 
as one of the most important indicators for the presence of 
terrestrial and coastal environments at that time. The fossil 
wood fragments found from the Middle–Late Jurassic-aged 
units are mainly conifer woods (e.g., Fakhr and Marguerier 
1977; Philippe et al. 2006, 2019; Oh et al. 2015), and yielded 
important information to understand palaeogeography and 

palaeobiogeography of terrestrial environments. Oh et al. 
(2015) and Philippe et al. (2019) demostrated that both 
Protelicoxylon and Xenoxylon are strictly Laurasian gen-
era, and the nearest floras containing representatives of 
these genera are known from the Middle Jurassic of Iran 
(Fakhr and Marguerier 1977; Philippe 1995). Protelicoxylon 
and Xenoxylon were also identified in the Liassic (Lower 
Jurassic) of north-eastern France (Philippe 1995).

In Turkey, many palaeobotanical studies including a 
large diversity of woody species were performed mainly 
on fossil woods from Eocene to Miocene (e.g., Akkemik et 
al. 2016, 2017, 2018, 2019, 2020, 2021) while information on 
Jurassic woods remained rather restricted. The wood occur-
rences in the Gümüşhane and Erzurum regions have not yet 
been properly investigated though it was known that they 
may have some palaeobiogeographical potential (Philippe 
et al. 2006, 2017). Some fossil wood fragments from the 
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Gümüşhane-Akçakale region were previously described by 
Kandemir (2004) as species of Agathoxylon. Additional three 
wood specimens collected by Nurdan Yavuz (Gümüşhane, 
Turkey) from Gümüşhane locality in Bayburt region, and 
later sent to Erdei Boglarka (Budapest, Hungary), have been 
also assigned to Agathoxylon by Philippe et al. (2006). The 
palynoflora of the wood-bearing Middle Jurassic Şenköy 
Formation has been studied by Akgün et al. (2006) who 
identified a presence of a mix of dry coastal cheirolepidia-
cean and wet fern lowland vegetation.

Additionally, Kutluk et al. (2012), identified Agathoxylon 
sp. in wood fragments from the Oltu Gemstone of Erzurum 
and dated them as Late Cretaceous. According to Bozkuş 
(1992) and Kara-Gülbay et al. (2018), however, the age of 
this material is most likely the earliest Late Jurassic.

This study constitutes the first detailed study of Jurassic 
wood floras from Gümüşhane and Erzurum regions of 
northeastern Anatolia. The purpose of the present study is 
to define the taxonomic identity of the Jurassic woods and 
to discuss their palaeobiogeographical and palaeocological 
implications.

Institutional abbreviations.—CNRS, Centre National de 
la Recherche Scientifique, Paris, France; ISTO, Istanbul 
University, Faculty of Forestry Herbarium, Turkey.

Other abbreviations.—DUT, Dutlu village of the city of 
Oltu in the province of Erzurum, Turkey; eSZ, Sakarya 
Zone; GED, the site of Edire in the province of Gümüşhane, 
Turkey; GUM, the Beyçam district of the province of 
Gümüşhane, Turkey; YES, Yeşilbağlar village of the city of 
Oltu in the province of Erzurum, Turkey.

Geological setting
Fossil woods were collected from Gümüşhane and Oltu-
Olur (Erzurum) regions. Both regions are located in the 
eastern Sakarya Zone, NE Turkey (Fig. 1A). Locations, geo-
logical backgrounds of the regions and stratigraphic posi-
tions of the samples are given in Figs. 1B, C, 2.

The eastern Sakarya Zone (eSZ) in Turkey experienced 
a complex Mesozoic geodynamic evolution, which is not 
yet fully understood. The Early–Middle Jurassic period in 
the eSZ was characterized by the presence of a rift sys-
tem which resulted in rock units of variable lithology and 
facies. The Lower–Middle Jurassic volcano-sedimentary 
successions (Olurdere Formation in Olur region and Şenköy 
Formation in Gümüşhane region; Yilmaz 1985; Kandemir 
2004) are regarded as critical for understanding the tectonic, 
palaeogeography and palaeobiogeography of eSZ, which at 
that time was at the northern rim of the Neotethys Ocean.

These sequences are generally known as rift-related de-
posits in an intra-arc or a back-arc setting along the southern 
margin of Paleotethys. This rifting caused the opening of 
Neotethys in the south of Cimmerian Continent (Şengör 

and Yilmaz 1981; Görür et al. 1983; Kandemir 2004; Dokuz 
and Tanyolu 2006; Dokuz and Sünnetçi 2019; Kandemir et 
al. 2021). However, some researchers have attributed the 
deposition of these successions to an extensional basin of 
the fore-arc tectonic setting (Ustaömer and Robertson 2010; 
Okay et al. 2014; Akdoğan et al. 2018). Although there are 
different tectonic models of the evolution of Early–Middle 
Jurassic basins in the eSZ, the existence of terrestrial and 
coastal environments in the Jurassic have been agreed upon 
in all palaeogeographic reconstructions (Golonka 2004; 
Barrier et al. 2018; Torsvik 2019; Hinsbergen et al. 2020). 
The fossil woods from the eSZ, NE Turkey described herein 
present a direct evidence on the presence of terrestrial envi-
ronments at that time.
Gümüşhane region.—The samples from Gümüşhane region 
were collected close to the contact between Berdiga and 
Şenköy formations (Fig. 2: GED and GUM). The Şenköy 
Formation is dated as Hettangian/Sinemurian–Bathonian 
and rest on a heterogeneous Paleozoic basement (Kandemir 
2004).

The Şenköy Formation is ~2200 m thick and shows verti-
cal and lateral facies changes within a short distance (Fig. 2). 
Facies variations resulted from the blocky-faulted topogra-
phy during the deposition of its sediments (Kandemir and 
Yilmaz 2009). Kandemir (2004) also emphasized that the 
Şenköy Formation may represent typical rift-related sedi-
ments. This topographic differentiation is exemplified by the 
Gümüşhane section (see Fig. 2). The formation consists of 
basaltic and andesitic lithic tuffite, volcanogenic sandstone, 
shale, basaltic and andesitic lavas, conglomerate (Kandemir 
2004; Dokuz and Tanyolu 2006) and Ammonitico Rosso 
limestone horizons (Kandemir and Yilmaz 2009). The up-
permost part of the Şenköy Formation is dominated by shale, 
claystone, and sandstone interbedded with coals.

Akgün et al. (2006) showed that the palynomorph as-
semblage from the upper part of the Şenköy Formation is 
typical of the Bathonian (Middle Jurassic) and is charac-
terized by the presence of the dinoflagellate cyst Cteni
dodinium continuum, miospores Matonisporites equiexinus, 
Dictyophyllidites harrisii, Gleicheniidites senonicus, Cere
bropollenites mesozoicus, and bisaccate pollen as well as 
the common pollen of Cyathidites minor and Classopollis 
torosus. The Middle Jurassic palynoflora of the upper part 
of the Şenköy Formation indicates the existence of locally 
wetlands, coastal conditions and a hot and temporarily 
dry subtropical-tropical climate. The Şenköy Formation 
is commonly conformably overlain by Upper Jurassic–
Lower Cretaceous Berdiga Formation (Pelin 1977) in the 
Gümüşhane region largely characterized by platform type 
carbonates.

The Beyçam wood specimens (GUM) were collected from 
the lowest part of the Berdiga Formation in the Gümüşhane 
region. Although this formation has been extensively studied 
(Kirmaci et al. 1996; Tasli et al. 1999; Koçyiğit and Altiner 
2002; Koch et al. 2008; Vincent et al. 2018) its age, however, 
remains poorly constrained, largely because of the paucity of 
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Fig. 1. A. Geographic location (inset) and regional tectonic setting of Turkey (after Okay and Tüysüz 1999). B, C. Simplified geological map of the 
Gümüşhane region  (B, after Kandemir 2004), the Olur-Oltu region (C, after Konak and Hakyemez 2008) and location of the Jurassic wood sites.
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biostratigraphically important fossils. The authors have var-
iously suggested that its sedimentation commenced during 
the Aalenian–Bajocian or Callovian (Middle Jurassic; Pelin 
1977; Kirmaci 1992; Robinson et al. 1995) or during the 
Oxfordian or Kimmeridgian (Late Jurassic; Koch et al. 2008; 
Tasli et al. 1999; Dokuz and Tanyolu 2006). Detrital zircons 
from the Şenköy Formation (Akdoğan et al. 2018), close to 
the Berdiga Formation type section near Alucra, more pre-
cisely constrain a latest Oxfordian or younger depositional 
onset age for the formation in this region.

The Edire wood specimens (GED) were collected from 
Şenköy Formation in the Gümüşhane province. These fossil 
wood-bearing deposits correspond to the upper levels of 
the Şenköy Formation. Kandemir (2004) determined their 
age as Bathonian (Middle Jurassic) based on the pollen and 
spores in these deposits at the Gümüşhane in Şenköy section. 
In the Edire region the sediments are mostly represented by 
matrix and sometimes grain supported conglomerate and 

sandstone with lenticular structure. These conglomerate and 
sandstone levels have no lateral continuity. The pebbles are 
well rounded but poorly sorted and their origin is volcanic. 
Above this terrigenous level the sediments mostly consist of 
clay and silt-grained rocks. These include organic-rich dark 
layers in their intermediate levels. These layers supported 
coal mining in the 18th century. Fossil wood fragments were 
found in lateral equivalents of these coal-bearing levels. 
Fossil wood fragments have different sizes and are scattered 
at this level. Above these levels, there are red-colored, ex-
tremely brittle and weathered gravel beds of volcanoclastic 
rocks. Cross-bedding is observed at some levels in these 
volcaniclastics. The volcaniclastics pass upward into clayey-
marly deposits. The sequence is overlain by the cherty lime-
stone beds of the Berdiga Formation (Kandemir 2004). The 
wood-bearing sequence of the Şenköy Formation may have 
been deposited in a terrestrial environment and is com-
monly interpreted as marsh deposit. The presence of fossil 

Fig. 2. Generalized columnar section of the studied regions (Gümüşhane section modified from Vincent et al. 2018; Olur-Oltu section modified from 
Konak and Hakyemez 2008 and Kara-Gülbay et al. 2018). Abbreviations: DUT, Dutlu village of the city of Oltu in the province of Erzurum, Turkey; GED, 
the site of Edire in the province of Gümüşhane, Turkey; GUM, the Beyçam district of the province of Gümüşhane, Turkey; YES, Yeşilbağlar village of the 
city of Oltu in the province of Erzurum, Turkey. Triassic rocks are not observed in the Eastern Sakarya zone. So we left this section blank in the figure. 
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wood fragments, coal-bearing levels and sedimentological 
properties of the sediments suggest that the depositional 
environment of the Şenköy Formation was terrestrial in the 
Edire region.
Olur-Oltu region.—In Erzurum region, the samples were 
collected from the upper levels of the Jurassic sequence 
defined as the Olurdere Formation (Fig. 2). The sampling 
sites are in Dutlu village of the city of Oltu in the province 
of Erzurum (DUT) and Yeşilbağlar village of the city of 
Oltu in the province of Erzurum (YES). The Jurassic strata 
rest on Palaeozoic–Triassic gneiss and metabasics intruded 
by various veins and dykes (Fig. 1C) and are represented 
mostly by undifferentiated volcano-sedimentary rocks. This 
Jurassic unit is covered by the Olurdere Formation (Figs. 1C, 
2) yielding wood fragments, which are known locally as 
Oltu Gemstone. The formation mainly consists of claystone, 
sandstone, conglomerate intercalations and volcanics with 
thin coal bands and Oltu Gemstone occurrences (Fig. 2). 
The Olurdere Formation is concordantly overlain by the 
Upper Jurassic–Lower Cretaceous Yeşilbağlar Formation 
(Yilmaz 1985; Bozkuş 1992). The Formation mainly con-
sists of thin bedded, white and grey colored, micrite and 
clayey micritic limestone with chert bands and chert concre-
tions in its upper part (Figs. 1C, 2).

Kara-Gülbay et al. (2018) showed that Oltu Gemstone 
coal consists of several lenses of only a few meters of 
lateral extension each and 50 cm of maximum thickness 
within the Lower–Upper Jurassic Olurdere Formation in 
Erzurum region. These lenses were locally mined for the 
Oltu Gemstone resulting in numerous small galleries devel-
oped along their exposure on the southern flanks of Dutlu 
Mountain (Fig. 1C). Kara-Gülbay et al. (2018) suggested 
that Oltu Gemstone coal was deposited in an environment 
changing from shallow marine to deep shelf where volca-
nism was effective and coals were formed by deposition 
of organic matter of mainly terrestrial type under anoxic 
conditions in an environment which occasionally changed 
to ephemeral swamps with resin producing trees. Ağirman 
Aktürk (2016) suggested that Olurdere Formation is charac-
terized by the conglomerate, sandstone, mudstone, siltstone 
as well as thin coal seams (Oltu Stone) alternations and 
describe the depositional environment of the formation as 
a fan delta.

Material and methods
The fossil wood fragments were taken from four different 
sites (Figs. 1, 2; Table 1). These are the Beyçam district 
of the province of Gümüşhane (GUM), the site of Edire 
also in the province of Gümüşhane (GED), Dutlu village 
of the city of Oltu in the province of Erzurum (DUT) and 
Yeşilbağlar village of the city of Oltu in the province of 
Erzurum (YES). All 27 fossil wood specimens have been 
coded as ISTO-FW-00217 to ISTO-FW-0043 and identified 
taxonomically.

Three thin sections were prepared from each fossil 
specimen in transversal, tangential longitudinal and radial 
longitudinal orientations. For tracheid and ray dimensions, 
at least 30 measurements were performed. As all woods 
belong to conifers, we followed IAWA criteria for gymno-
sperm woods (IAWA Committee 2004) and Philippe and 
Bamford (2008) for terminology and generic identifica-
tions. For comparison and species descriptions we used the 
following references: Philippe (1995), Philippe et al. (2006, 
2013, 2019), Bamford and Philippe (2001), Philippe and 
Bamford (2008), Kloster and Gnaedinger (2018), and Boura 
et al. (2021).

Systematic palaeontology
Order Pinales Dumortier, 1829
FamilyAraucariaceae Henkel and Hochstetter, 1865
Genus Agathoxylon Hartig, 1848
Type species: Agathoxylon cordaianum Hartig, 1848; Coburg, Germany; 
Keuper, Upper Triassic.

Stratigraphic and geographic range.—Middle Jurassic 
for Şenköy Formation and Berdiga Formation, and Upper 
Jurassic for Olurdere Formation. Agathoxylon is widely dis-
tributed worldwide throughout the Jurassic.

Agathoxylon sp.
Figs. 3, 5.

Material.—Twenty-six samples (ISTO-FW-00217–00241) 
from Jurassic of Turkey localities GUM, GED, DUT, and 
YES (see Table 1 for details).

Table 1. The identified fossil species from the Jurassic of eastern Anatolia, Turkey.

Identification Family Specimen Locality

Agathoxylon sp. (type 1)

Araucariaceae

ISTO-FW-00217 Beyçam district of the province of Gümüşhane
ISTO-FW-00218–00226 Edire in the province of Gümüşhane

Agathoxylon sp. (type 2)

ISTO-FW-00227–00230 Dutlu of the city of Oltu in the province of Erzurum
ISTO-FW-00231–00237 Beyçam district of the province of Gümüşhane

ISTO-FW-00238 Edire in the province of Gümüşhane
ISTO-FW-00239–00241

Yeşilbağlar of the city of Oltu in the province of 
Erzurum

Protelicoxylon asiaticum (Serra, 1969) 
Philippe, 1995 Taxaceae ISTO-FW-00242

Xenoxylon hopeiense Chang, 1929 unknown ISTO-FW-00243
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Fig. 3. Araucariacean wood sections of Agathoxylon sp. type 1 (ISTO-FW-00217) from Jurassic of the Beycam locality of the province of Gümüshane, 
Turkey. A1, A2, transversal sections with distinct growth ring boundary; A3, A4, tangential sections with high rays. 
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Fig. 4. Araucariacean wood sections of Agathoxylon sp. type 1 (ISTO-FW-00217) from Jurassic of the Beycam locality of the province of Gümüshane, 
Turkey. A1–A3, uni- to triseriate of intertracheary radial pits; A4, A5, predominantly araucariod type cross-field pits. 
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Fig. 5. Araucariacean wood sections of Agathoxylon sp. type 2 from Jurassic of the Beycam locality of the province of Gümüshane, Turkey. A. ISTO-FW-00235, 
transversal sections with distinct growth ring boundary. B. ISTO-FW-00234, short rays in tangential section (B1), intertracheary pits on tangential walls (B2). 
C. ISTO-FW-00239, predominantly uniseriate of intertracheary radial wall pits (C1, C2). D. ISTO-FW-00232, araucarioid type cross-field pits. 
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Description.—The silicified wood fragments of at least 8 cm 
in diameter. Transition from the earlywood to the latewood 
gradual and indistinct. Growth ring borders distinct, with 
1–5 rows of narrowed latewood tracheids, or indistinct. 
Tracheid sections circular to polygonal. Tangential and radial 
diameters of earlywood tracheids 49 (23–93) μm and 55 (18–
92) μm, respectively. These are 31 (8–67) μm and 22 (8–57) 
μm in the latewood. Double cell wall thickness 19 (6–39) µm 
in the earlywood, and 20 (8–35) µm in the latewood. Resin 
canals and axial parenchyma not observed (Figs. 3A, B, 5A).

Rays uniseriate, rarely partly biseriate for some levels. 
Ray heights 10–20 (1–45) cells, 348 (50–1240) μm, ray widths 
34 (14–58) μm, and 4–5 (3–7) rays per mm in type 1 (Fig. 3C, 
D), and average 2–6 cells in type 2 (Fig. 5B). Intertracheary 
pits on tangential walls, helical thickenings and axial paren-
chyma not observed (Figs. 3C, D, 4). Intertracheary pits on 
tangential walls present in type 2 (Fig. 5C).

Intertracheary pits on radial walls uni, bi-, or triseriate, 
contiguous, araucarian, predominantly vertically flattened 
to circular and rarely hexagonal. Heights of biseriate inter-
tracheary pits on radial walls are 16 (12–20) μm, and their 
widths are 21 (12–33) μm, those in triseriate pits are slightly 
smaller, 15 (13–17) μm and 16 (12–20) μm, respectively. 
Rims of Sanio absent. Cross-field pits of the cupressoid type, 
6 (4–9) μm in diameter. Cross-field araucarioid, with 2–13 
pits per cross-field. Crystals absent (Figs. 4A–E, 5D–F).
Remarks.—The features of the fossil wood, which are uni-, 
bi- or triseriate of araucarian type radial intertracheary pits, 
and araucarioid type of cross-field pits with numerous cu-
pressoid oculipores are those of Agathoxylon (Philippe and 
Bamford 2008).

Numerous species of Agathoxylon were described from 
the Mesozoic (e.g., Torres and Philippe 2002; Poole and 
Ataabadi 2005; Zamuner 1996; Zamuner and Falaschi 2005; 
Kutluk et al. 2012; Pujana et al. 2015). In recent years, a 
detailed comparison of Gondwanan Agathoxylon woods of 
Permian to Paleogene age has been provided by Kloster and 
Gnaedinger (2018) who suggested that these woods could be 
classified into groups on the basis of the shape and seriation 
of the intertracheary pits as well as the number of pits per 
cross-field. Beyond the relevance of the prevalence of geo-
graphic logic over stratigraphic logic, this work is based on 
a discretization of the shapes and seriation of the intertra-
cheary pits that may seem confusing to anyone accustomed 
to the variability of these characters, in present-day wood 
as well as in fossil wood, coupled with the taphonomic 
bias that can profoundly modify the appearance of the pits. 
Shape and seriation of the pits as well as their number per 
cross-field are not continuous variables, and any systematics 
is only a combination of the recognized modalities (Philippe 
2011; Booi et al. 2014). Attempts at multivariate analysis are 
of limited interest because they overlook that most xylologi-
cal variables are sub-discrete variables, which can only take 
on a limited number of values.

At present more than 463 species of Agathoxylon were 
identified, of which the generic assignment of more than 240 

can be confirmed as correct from their protologue. Most of 
these species are rather similar to each other, and therefore a 
comprehensive revision is needed. It is unlikely that any tax-
onomic approach could create taxa within Agathoxylon that 
have biological, palaeoecological, or palaeobiogeographical 
significance. For that reason, we prefer to leave these speci-
mens in open nomenclature, as Agathoxylon sp.

The fossil woods identified as Agathoxylon in this study 
can be divided into two types. In the first type (ISTO-FW- 
00217–00226), the woods have higher rays (average 10–20 
cells) and 1–3 seriate of intertracheary radial walls pits 
(Figs. 3–5). In the second type (ISTO-FW-00227–00241), 
the woods have shorter rays (average 2–6 cells) and pre-
dominantly uniseriate of intertracheary radial wall pits 
(Fig. 5).

Family Taxaceae Gray, 1821
Genus Protelicoxylon Philippe, 1995
Type species: Protelicoxylon feriziense (Fahkr and Marguerier, 1977) 
Philippe, 1995; Iran; Middle Jurassic.

Protelicoxylon asiaticum (Serra, 1969) Philippe, 
1995
Figs. 6–8.

Material.—One silicified wood fragment numbered as 
ISTO-FW-00242 from Jurassic of Turkey, locality Yeşil
bağlar of the city of Oltu in the province of Erzurum. It is 
deposited at the Department of Forest Botany, Faculty of 
Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
Description.—Growth ring boundaries distinct, with 2–4 
rows of flattened latewood tracheids. Transition from early-
wood to latewood gradual. Tracheid cross sections circular 
to polygonal (Fig. 6A, B). Tangential and radial widths of 
tracheids are 27 (18–36) µm and 23 (15–32) µm in the ear-
lywood, and 22 (16–27) µm and 6 (3–10) µm in latewood, 
respectively. Double wall thicknesses are 8 (5–10) µm in 
earlywood and 4 (2–7) µm in latewood, respectively. Axial 
resin canals absent (Fig. 6A, B).

Rays exclusively uniseriate, very rarely partly biseriate 
for some levels. Rays 3–7 (1–10) cells and 104 (32–217) 
µm high, and 28 (17–46) µm wide (Fig. 6C, D). Axial pa-
renchyma present (Fig. 7A, B). Intertracheary pits present, 
sparse and uniseriate on tangential walls (Fig. 7 C). Rays 7 
(5–9) per mm. Spiral thickenings common, often paired or 
even grouped by three, thin (1–4 µm wide), with a low angle 
to the horizontal (30°) (Fig. 7D, E). A few isolated or paired 
callitroid thickening were observed.

Rays homogenous (Fig. 7F). Cross-fields are araucar-
ian, with 3–13 cupressoid pits per cross-field. Diameters of 
cross-field pits are 4 (3–6) µm. Intertracheary pits on radial 
walls predominantly araucarian and uniseriate, very rarely 
biseriate, and then opposite (abietinean). The radial inter-
tracheary pitting is of the mixed-type. Diameters of inter-
tracheary pits on radial walls are 14 (11–18) µm in diameter 
(Figs. 7F, 8A–D).
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Fig. 6. Taxacean wood sections of Protelicoxylon asiaticum (Serra, 1969) Philippe, 1995 (ISTO-FW-00242) from Jurassic of the Yesilbaglar locality of 
the province of Erzurum, Turkey. A1, A2, transversal sections with distinct growth ring boundary; A3, A4, tangential sections with predominantly uniseriate 
and short rays. 
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Fig. 7. Taxacean wood sections of Protelicoxylon asiaticum (Serra, 1969) Philippe, 1995 (ISTO-FW-00242) from Jurassic of the Yesilbaglar locality of 
the province of Erzurum, Turkey. A1, A2, axial parenchyma in tangential sections; A3, intertracheary pits in tangential section; A4, A5, spiral thickening on 
tracheid walls; A6, homogenous ray, araucarian and uniseriate intertracheary pits on radial walls. 
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Fig. 8. Taxacean wood sections of Protelicoxylon asiaticum (Serra, 1969) Philippe, 1995 (ISTO-FW-00242) from Jurassic of the Yesilbaglar locality of 
the province of Erzurum, Turkey. A1–A4, homogenous ray, araucarian and uniseriate intertracheary pits on radial walls; A1, A3, A4, araucarian cross-fields 
pits with 3-13, each of them cupressoid in cross-fields. 
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Remarks.—Protelicoxylon Philippe, 1995, is a genus de-
signed for woods that are characterized by mixed-type pit-
ting on the radial walls of the tracheids and different types 
of tertiary thickenings: spirals, crassulae or thin horizontal 
bars. The genus has cross-fields with cupressoid to dacry-
dioid pits and might features axial parenchyma. This genus 
was recently reviewed by Philippe (1995) (Table 2).

Our wood is most similar to Protelicoxylon asiaticum 
(Serra, 1969) Philippe, 1995 in having predominantly arau-
carian type of radial intertracheary pitting, presence of axial 
parenchyma, 2–5 cupressoid oculipores per field, and pres-
ence of callitroid thickenings (Table 3). The wood described 
by Nadjafi (1982), from the Middle Jurassic of Elburz (Iran) 
is also strikingly similar to our material.
Stratigraphic and geographic range.—Upper Jurassic for 
Olurdere Formation, Turkey from Southeast Asia (Vietnam) 
westward to Iran.

Family unknown
Genus Xenoxylon Gothan, 1905
Type species: Xenoxylon latiporosum (Cramer, 1868) Gothan, 1905; the 
exact locality and age unknown (Philippe and Cantrill 2007).

Xenoxylon hopeiense Chang, 1929
Figs. 9–11.

Material.—One silicified wood fragment coded as ISTO- 
FW-00243 from Jurassic of Turkey, locality Yeşilbağlar of 

the city of Oltu in the province of Erzurum. It is deposited 
at the Department of Forest Botany, Faculty of Forestry, 
Istanbul University-Cerrahpasa, Istanbul, Turkey.
Description.—Growth ring boundary faint but distinct 
with only 1–2 rows of flattened latewood tracheids. Axial 
resin canals absent. Transition from earlywood to latewood 
abrupt. Growth rings generally less than 0.5 mm wide gen-
erally. Tracheid cross-section hexagonal, rounded or rectan-
gular (Fig. 9A, B). Tangential and radial widths of tracheids 
are 46.7 (30.2–57.6) µm and 56.9 (32.5–111.7) µm in the 
earlywood, and 27.9 (10.0–44.3) µm and 21.8 (14.2–32.5) µm 
in the latewood, respectively. Double wall thicknesses are 
10.7 (7.7–14.2) µm in earlywood and 14.1 (9.1–20.8) µm in 
latewood, respectively.

Rays exclusively uniseriate, rarely partly biseriate and 
ray heights 5–15 (2–47) cells (314.8 [119.1–1218] µm, and 
their average width is 18.1 [12.9–27.0] µm) (Figs. 9C, 10A–
C). Intertracheary pits present, sparse and uniseriate on tan-
gential walls and their diameters are 11.0 (8.8–12.8) µm 
(Fig. 10D). Rays are 4–5 (3–7) per mm. Axial parenchyma 
not observed.

Rays homogenous. Intertracheary pits on radial walls 
uniseriate or in some cases biseriate opposite. Intertracheary 
pits locally xenoxylean, mostly strongly flattened, pit rows 
locally interrupted. Rims of Sanio commonly present be-
tween both uniseriate and biseriate pits. Heights of inter-
tracheary pits are 17.2 (12.3–23.7) µm, their widths are 27.1 

Table 3. Comparison of the published fossil species of Protelicoxylon with our wood identified as Protelicoxylon asiaticum (Serra, 1969) Philippe, 
1995 (ISTO-FW-00242) (adapted from Gnaedinger 2007).

Country, age Vietnam,  
Early Cretaceous

Iran,  
Middle Jurassic

France,  
Early Jurassic

Hungary,  
Early Jurassic

Turkey,  
Jurassic

Species
Protelicoxylon asiaticum 
(Serra, 1969) Philippe, 

1995

Protelicoxylon  
feriziense (Fahkr and 

Marguerier, 1977) 
Philippe, 1995

Protelicoxylon  
lepennecii Philippe, 

1995

Protelicoxylon  paren-
chymatosum (Greguss, 
1967) Philippe, 1995 

Protelicoxylon asiaticum  
(Serra, 1969) Philippe, 

1995 (ISTO-FW-00242)

Radial pitting

uniseriate (exceptionally 
biseriate), araucarian, 

rarely abietinean  
(biseriate opposite)

uniseriate (excep-
tionally biseriate), 

araucarian or  
abietinean

predominantly  
uniseriate, predomi-

nantly abietinean 

uniseriate (exception-
ally biseriate), araucar-
ian, rarely abietinean 
(biseriate opposite)

uniseriate (exceptionally 
biseriate), araucarian, 

rarely abietinean  
(biseriate opposite)

Axial parenchyma present sparse abundant present present

Cross fields 2–5 cupressoid  
oculipores

1 (rarely 2–3) 
oculipores

2–5 cupressoid to 
dacrydioid oculipores

1–2 (rarely 3) 
oculipores

3–8 (rarely up to 13) 
cupressoid oculipores, 

araucarian

Spiral thickenings present, often paired,  
or even by three present, often paired present present present, often paired or 

even by three
Crassulae – ? present present sometimes present
Callitroid thickenings present present present present present

Table 2. Fossil wood species assigned to the Protelicoxylon (adapted from Philippe et al. 2019). The name Prototaxoxylon persicum was mentioned 
in an unpublished thesis (Nadjafi 1982) and is not validly published.

Taxon name, authority Reference Age Country
Protelicoxylon asiaticum (Serra, 1969) Philippe, 1995 Serra 1969 Early Cretaceous Cambodia
Protelicoxylon feriziense (Fakhr and Marguerier, 1977) Philippe, 1995 Fakhr and Marguerier 1977 Middle Jurassic Iran
Protelicoxylon lepennecii Philippe, 1995 Philippe 1995 Early Jurassic (Toarcian) France 
Protelicoxylon parenchymatosum (Greguss, 1967) Philippe, 1995 Greguss 1967 Early Jurassic (Toarcian) Hungary
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Fig. 9. Wood sections of Xenoxylon hopeiense Chang, 1929 (ISTO-FW-00243) from Jurassic of the Yesilbaglar locality of the province of Erzurum, 
Turkey. A1–A2, transversal sections with distinct growth ring boundary; A3, predominantly uniseriate rays in tangential section. 
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Fig. 10. Wood sections of Xenoxylon hopeiense Chang, 1929 (ISTO-FW-00243) from Jurassic of the Yesilbaglar locality of the province of Erzurum, 
Turkey. A1–A3, tangential sections with predominantly uniseriate and rarely partly biseriate rays; A4, intertracheary pits on the tangential walls of trache-
ids; A5, A6, mostly flattened xenoxylean type intertracheary pits on radial walls of tracheids. 
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Fig. 11. Wood sections of Xenoxylon hopeiense Chang, 1929 (ISTO-FW-00243) from Jurassic of the Yesilbaglar locality of the province of Erzurum, 
Turkey. A1–A3, intertracheary pits on radial walls uniseriate or in some cases biseriate opposite, intertracheary pits locally xenoxylean, mostly strongly 
flattened, pit rows locally interrupted, rims of Sanio commonly present between both uniseriate and biseriate pits; A4–A6, window-like cross-field pits. 
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(20.0–33.3) µm, and the ratio of height to the width of pits is 
0.64. Cross-fields feature predominantly one large fenestri-
form oopore in the earlywood, and the ray cells thin-walled. 
Very rarely two oopores may be seen in a single cross-field. 
Heights of oopores are 14.1 (9.3–19.2) µm, and their widths 
are 31.6 (14.4–46.6) µm, and the ratio of height of oopores 
to the width is 0.45. Axial parenchyma absent (Figs. 10E, F, 
11A–F).
Remarks.—Xenoxylon was established by Gothan in 1905 
based on the unusual features of some fossil gymnosperm 
woods from the Mesozoic, which have large rectangular ear-
lywood cross-fields and strongly flattened more than twice as 
wide as high, contiguous intertracheary pits on radial walls 
of tracheids. This type of intertracheary pitting is called 
“xenoxylean radial pitting” (Müller-Stoll 1951; Suzuki and 
Terada 1992; Philippe and Bamford 2008; Boura et al. 2021). 
In similar fossil genera, cross-field oopores are more phyl-
locladoid (pointed and oblique, as in Protophyllocladoxylon 
Kräusel, 1939 [nomen conservandum]), or round and nar-
rowly bordered all around (as in Circoporoxylon Kräusel, 
1949). Due to its large and single oopores per cross-field and 
its locally xenoxylean pitting on radial walls of tracheids, our 
wood is assigned to Xenoxylon Gothan,1905.

Philippe et al. (2013) proposed an identification key for 
the Xenoxylon Gothan, 1905, species, and divided them into 
three informal groups. One of the groups is the Xenoxylon 
phyllocladoides Gothan, 1906, which is characterized by 
less strictly xenoxylean pitting, with some spaced, round 
or elliptic, intertracheary pits on the radial tracheid walls 
and rare pits on tangential walls. Our fossil clearly belongs 
to this group. In this group, there are: Xenoxylon hopei-
ense Chang, 1929; Xenoxylon huttonianum (Witham, 1833) 
Philippe and Hayes, 2010; Xenoxylon jakutiense Shilkina, 
1986, and Xenoxylon phyllocladoides Gothan, 1906. Having 
Sanio’s rims, no axial parenchyma, and both uni- to biseri-
ate radial intetracheary pitting, the present specimen differs 
from all other fossil species within the Xenoxylon phyl-
locladoides group. As axial parenchyma could have been 
overlooked, and as Xenoxylon jakutiense Shilkina, 1986, 
intertracheary radial pitting is always uniseriate, we con-
sider that greatest similarities are with Xenoxylon hopeiense 
Chang, 1929.
Stratigraphic and geographic range.—Upper Jurassic for 
Olurdere Formation. As all Xenoxylon this is a boreal spe-
cies. It has a wide distribution, ranging from Asia (China 
and Korea) northward to the Arctic.

Discussion
We could distinguish two fossil wood assemblages from 
north-eastern Anatolia (Fig. 12A). First, the Middle Jurassic 
assemblage, consists only of Agathoxylon. The second, the 
Late Jurassic assemblage, is much more diverse and com-
prise Agathoxylon, Protelicoxylon, and Xenoxylon. The re-

spective compositions of the two assemblages have palaeo-
biogeographic and palaeoecological implications.

The monogeneric Middle Jurassic assemblage is less in-
formative. Indeed, the genus Agathoxylon was widespread 
worldwide at that time. It cannot be unequivocally linked to 
a botanical taxon (Rößler et al. 2014), nor to any particular 
environment. The wood of Agathoxylon was reported from 
several Middle Jurassic localities that are now in relative 
proximity of Turkey and located on both margins of the 
Neotethys. The Gondwanan side includes occurrences in 
Israel (Philippe et al. 2004) and Tunisia (Philippe et al. 
2004), while the Laurasian side includes Bulgaria, Poland, 
and Romania (Philippe et al. 2006) (Fig. 12A). Agathoxylon 
was also reported from Middle Jurassic localities the palae-
obiogeography of which at that time is less clearly estab-
lished, as for Eastern Pontides: Iran (Kerman Basin, Central 
Iran; Poole and Ataabadi 2005) and Sardinia (Costamagna 
et al. 2018). It is worth to note that Agathoxylon is not yet 
reported from the Jurassic Shemshak Group in Alborz, Iran 
(Fig 12A). However, the existing data on fossil woods from 
this unit are uncertain as limited merely to an unpublished 
thesis (Nadjafi 1982), where the stratigraphic position of the 
studied specimens is not precisely indicated.

Although the absence of data is always a sensitive mat-
ter in palaeontology, it is noteworthy that Xenoxylon is ab-
sent from the eSZ Middle Jurassic assemblage, whereas it 
is abundantly documented on the northern Tethyan margin 
at the same time (Crimea, Georgia, and Poland; Philippe 
et al. 2006). Xenoxylon is also documented in the Middle 
Jurassic of Iran, from the Dansirit Formation and Dalichai 
Formation in Alborz (Mohammed Gadivel and Tayebe 
Farahani, unpublished data, 2008 and 2017, respectively) 
and from the Hodjek Formation in Central Iran (Poole 
and Ataabadi 2005). Similarly, it is also worthwhile that 
the wood of Metapodocarpoxylon, which was so widely 
distributed in northern Gondwana in the Middle Jurassic 
(Philippe et al. 2003), is missing not only in the Middle but 
also the Late Jurassic wood assemblages of northeastern 
Turkey.

Using a sedimentological approach Garcia et al. (1998) 
demonstrated that in the Middle–Late Jurassic of Western 
Europe Agathoxylon source trees did not grow in coastal 
environments, but rather inland. The palaeolatitudes of 
Agathoxylon occurrences in the Jurassic of Western Europe 
suggest a southern chorology for that area (Philippe et 
al. 2017) . It suggests that thus wood belong to relatively 
thermophilous trees, able to withstand dry seasons. This 
inference supports earlier interpretation of Akgün et al. 
(2006) based on palynofloras and other geological evi-
dences.

The two Late Jurassic fossil wood assemblages de-
scribed here are more informative. As in the case of the 
Middle Jurassic assemblages they both comprise woods of 
Agathoxylon. In Yeşilbağlar, besides Agathoxylon, the fos-
sil assemblage also consists of woods of Protelicoxylon 
and Xenoxylon, which is an uncommon association. Both 
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Fig. 12. The sampling localities of the identified fossil genera of Protelicoxylon and Xenoxylon from the Jurassic age of the World. A. The palaeofloristic 
divisions of the Early–Middle Jurassic and the palaeo-locations of the fossil sites (modified after Vakhrameev 1991) and the fossil sites for NE France, 
Alborz, Kerman Basin, Phu Qoc, and Khorat Basins (i.e., where Protelicoxylon and Xenoxylon are documented). B. Global palaeogeographic recon-
struction of the Earth in the Late Jurassic period (from Ron Blakey https://paleonerdish.wordpress.com/2015/06/01/the-real-jurassic-world/). C. Detailed 
palaeogeographic map of the eastern Sakarya Zone (after Şengör and Yilmaz 1981). 
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Protelicoxylon and Xenoxylon are strictly Laurasian (Oh 
et al. 2015; Philippe et al. 2019), and their occurrence in the 
eSZ demonstrates that at that time the terrestrial ecosystems 
of the area were connected to the Laurasian Realm (Fig. 12B, 
C). The spatially closest occurrence for Protelicoxylon is 
Ferizi, in Alborz Mountains, northern Iran (Fakhr and 
Marguerier 1977; Philippe 1995). In this locality the Dansirit 
Formation crops out and is dated as Middle Jurassic (early 
Bajocian; Vaez-Javadi 2010). The Dansirit Formation in Iran 
also yielded Xenoxylon (see above).

Genera Protelicoxylon and Xenoxylon are rarely found 
occurring together. Such co-occurrence is documented 
from the Lower Jurassic of North-eastern France (Philippe 
1995), from the lower Middle Jurassic of Northern Iran 
(see above), here from the Upper Jurassic of eSZ, and in 
the Upper Jurassic–Lower Cretaceous of Southeastern Asia 
(Khorat Basin and its coeval Phu Qoc Basin; Serra 1969; 
Philippe et al. 2019; Boonchai et al. 2020). If such co-oc-
currence reflects that the source plants were part of the 
same vegetation, data suggest that corresponding vegetation 
originated in western Europe during the Early Jurassic, and 
subsequently shifted eastwards.

The boreal genus Xenoxylon is related to high palaeo-
latitudes throughout its time range, from the Carnian (Late 
Triassic) to the Maastrichtian (Late Cretaceous), with oc-
casional extensions of its distribution southwards, probably 
related to overall cooler and/or wetter periods (Philippe 
and Thévenard 1996; Marynowski et al. 2008; Philippe et 
al. 2009, 2017; Oh et al. 2015; Tian et al. 2016; Richmond 
et al. 2019). This relation was recently questioned (Xie 
et al. 2021) on the basis of growth-ring analysis by the 
Mean Annual Sensitivity method (Fritts 1976). Wide and 
regular rings have already been described for Xenoxylon 
(Philippe et al. 2009), and while they imply greater water 
availability, they do not necessarily indicate that the cli-
mate was warm. Similar Mean Annual Sensitivity values 
are also observed in temperate to cool oceanic climates 
(Fritts 1976). Moreover, the weak differentiation of the late-
wood by Xenoxylon could well be genetically determined 
rather than climatically induced (Brison et al. 2001). In the 
present state of knowledge, these tree-ring observations do 
not seem to call into question the inferences from the latitu-
dinal distribution of the genus and the correlation of south-
ward extensions during cooler time intervals (Amiot et al. 
2015, 2021). In the Eastern Pontides, as in Georgia (Delle 
1960), Alborz (Vaez-Javadi 2010), Uzbekistan (Shilkina 
and Khudayberdyev 1971), Hunan (Miao et al. 1989), and 
Liaoning (Philippe et al. 2019), Xenoxylon is associated 
with coal, which is indicative of a humid and not too warm 
palaeoenvironment.

Regarding the discussion on the presence of terrestrial 
and shoreline environment Hoş-Çebi (1998) suggests that 
the coals of Jurassic coal-bearing beds in Gümüşhane re-
gion were deposited in shoreline environment connected 
with the sea intermittently based on the Inductively Coupled 
Plasma Atomic Emission Spectroscopy (ICP-AES) analy-

ses, which is an analytical technique based on the principles 
of atomic spectroscopy for the determination of more than 
70 elements. As for the Erzurum region, Kara-Gülbay et al. 
(2018) studied the organic geochemistry and depositional 
environment of the Oltu Gemstone in the Erzurum region. 
They suggest that Oltu Gemstone coals were deposited in an 
environment changing from shallow marine to deep shelf 
conditions where volcanism was effective. They also imply 
that coal occurrences were formed by deposition of organic 
matter of mainly terrestrial type under anoxic conditions in 
an environment which occasionally changed to ephemeral 
wetlands where resin-rich trees were the source of resin.

Conclusions
Fossil woods from the Middle and Upper Jurassic of the 
Sakarya Zone (eSZ) revealed three genera of conifers 
Agathoxylon, Protelicoxylon, and Xenoxylon. For the Middle 
Jurassic only Agathoxylon is documented, which allows no 
palaeobiogeographic inference. Palaeoecologically these 
woods may support the previous palynomorph-based inves-
tigations which suggested at least seasonally dry climate. 
The Late Jurassic wood flora evidences a continuity of the 
Gondwanan eSZ terrestrial areas with the Laurasian ones. 
The occurrence of Xenoxylon within this Late Jurassic wood 
flora suggests abundant water supply under a relatively cool/
humid climate. Overall, both floras show important similar-
ities with a contemporaneous fossil wood flora of Iran and, 
to a lesser extent, those of Georgia. New studies of Sakarya 
Zone fossil wood assemblages would have a great potential 
to clarify the palaeobiogeographic scenario of the Sakarya 
Zone terrestrial ecosystems, with important implications for 
the knowledge of tectonics and associated palaeoclimate.
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