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The palaeoneurology of a new specimen of the Middle Triassic 
dicynodont synapsid Kombuisia frerensis

JULIEN BENOIT and JAGANMOY JODDER

The pineal eye is a photoreceptive organ, sometimes called 
the “third eye”, housed within the parietal foramen of some 
ectothermic vertebrates (Eakin 1973; Quay 1979). It is 
amongst the most enigmatic organs, and accordingly, con-
cerns relating to its origin and evolution have long fasci-
nated palaeontologists (Eakin 1973; Roth and Roth 1980; 
Benoit et al. 2016). In dicynodont synapsids, a parietal fo-
ramen is almost always present, with a few noticeable ex-
ceptions that have, so far, eluded explanations (Benoit et 
al. 2016; Kammerer 2019). Kombuisia frerensis is one such 
exception. There are two recognised species of Kombuisia: 
K. frerensis, from South Africa, and K. antarctica, from 
Antarctica. The two species are virtually undistinguishable 
except for the absence of a parietal foramen in the former, 
whereas the latter retains a slit-like opening on the skull 
roof (Fröbisch et al. 2010). While describing K. frerensis, 
Hotton (1974) refrained from including the absence of a 
parietal foramen in the diagnosis of the species as very lit-
tle was known about the intraspecific variability of this 
character. Intraspecific variation of the parietal foramen 
has since been documented in modern reptiles (e.g., Gundy 
and Wurst 1976; Roth and Roth 1980) and other synapsids 
(Benoit et al. 2016). As a result, the absence of a parietal 
foramen in K. frerensis has been treated with caution by 
subsequent authors (e.g., Kammerer 2019). In 2023, our re-
search team found a new specimen referrable to K. freren-
sis: an almost undeformed skull with articulated lower jaw 
and associated postcrania (Fig. 1A). This new specimen 
confirms that the absence of a parietal foramen is diag-
nostic for K. frerensis. We here explore the physiological 
implications of this condition and propose that it may be 
the result of latitudinal gradient separating the two species 
of Kombuisia.

Material and methods
Specimen BP/1/9600 (field number 39-09-2023) was found 
during an Evolutionary Studies Institute (ESI) fieldtrip 
in Sep tember 2023 by JJ at GPS coordinates S30°46.4868’; 
E26°17.8113’ on farm Luiperdkop (or Luiperdskop), in the 
Eastern Cape Province, Walter Sisulu local municipality (South 
Africa). Out crops at Luiperdkop expose the Trirachodon–
Kanne meyeria Subzone of the Cynognathus Assemblage Zone 

(Burgersdorp Formation), which is consistent with the age 
of the type locality of Kombuisia frerensis (Fröbisch 2007; 
Botha-Brink and Smith 2011; Hancox et al. 2020). BP/1/9600 
was preserved in an ex-situ calcareous, slightly haematitic nod-
ule (Fig. 1A).

The fossil was prepared by Charlton Dube (Evolutionary 
Studies Institute, Johannes burg, South Africa) using tungsten- 
carbide tipped air-scribes. It was CT-scanned at the ESI scanning 
facility of the University of the Witwatersrand, in Johannesburg, 
using a Nikon Metrology XTH 225/320 LC dual source CT 
system, with a voxel size of 0.0458 mm. The endocast was re-
constructed using manual segmentation in Avizo 2021 (Thermo 
Fisher Scientific, Hillsborough, USA). Attempts at scanning 
BP/1/430, the holotype skull of K. frerensis, failed to provide 
enough contrast between the bone and matrix.

The body mass of BP/1/9600 was estimated using skull 
length following the method provided by Benoit et al. (2017). 
The synapsid encephalization quotient (SEQ) was calculated 
following Benoit et al. (2023). A complete description of the 
cranial and postcranial anatomy of BP/1/9600 is currently in 
preparation (Christian Kammerer, personal communication 
2025). In this contribution, we focus primarily on the endocra-
nial anatomy aspect.

Institutional abbreviations.—BP, Evolutionary Studies Institute 
(formerly, Bernard Price), Johannes burg, South Africa.

Other abbreviations.—SEQ, synapsid encephalization quotient.

Systematic palaeontology
Synapsida Osborn, 1903
Dicynodontia Owen, 1859
Genus Kombuisia Hotton, 1974
Type species: Kombuisia frerensis Hotton, 1974; Lady Frere, Eastern 
Cape Province, South Africa, Anisian.

Kombuisia frerensis Hotton, 1974
Figs. 1, 2.

Material.—BP/1/9600 (field number 39-09-2023), skull from 
the Anisian, Middle Triassic, Burgersdorp Formation, farm 
Luiperdkop (or Luiperd skop), Eastern Cape Province, Walter 
Sisulu local municipality, South Africa.
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Description.—The skull is 75 mm long. Its identification as 
Kombuisia frerensis is supported by its small size, relatively 
short and rounded snout in dorsal view, the absence of tusks, 
inverted triangular shape of the interparietal, absence of a pa-
rietal foramen, and the two postorbitals that almost meet at 
the midline dorsal to the orbits (Fig. 1B). The small size and 
absence of a parietal foramen preclude its identification as a 
kannemeyeriiform. The occlusion of the mandibular fenestra 
and presence of a large lateral dentary shelf also supports its 
identification as a species of Kombuisia. The cranial sutures, 
though still visible, are mostly closed, so it is not a juvenile 
of a larger taxon. The two postorbitals joining at the midline 
is a unique diagnostic trait of K. frerensis, whereas these two 
bones are relatively more separated in the Antarctic species, 
Kombuisa antarctica Frobïsch et al., 2010 (Fröbisch et al. 2010). 
BP/1/9600 is thus safely referrable to K. frerensis regardless of 
the parietal foramen condition.

The endocast of the brain cavity shows no sign of a pineal 
tube nor body (Fig. 2C). The overall outline of the endocast 
aligns with the generalised Permian dicynodont condition, as 
it is mostly linearly arranged (Hopson et al. 1979; Laaß 2015b; 
George et al. 2024). In contrast, Triassic species belonging to 
Lystrosaurus and the kannemeyeriiforms have strongly flexed, 
anteroposteriorly compressed endocasts (Lehman 1961; Cluver 
1971; Hopson et al. 1979). Anteriorly, the olfactory bulbs ap-
pear narrower than the cerebral hemispheres. The volume of 

the olfactory bulbs (defined as the slight impression at the base 
of the olfactory tracts) is 0.161 cm3, which is similar to those 
of Rastodon (0.102 cm3, Simão-Oliveira et al. 2020), but a lot 
smaller than in Cistecephalus (1.31 cm3, Macungo et al. 2023; 
although it exceeds 50% of that of the total endocast, so it 
must be overestimated). The cerebral hemispheres are dorso-
ventrally flat and slightly expanded mediolaterally. This con-
dition is also present in Rastodon (Simão-Oliveira et al. 2020). 
Mediolaterally expanded cerebral hemispheres are also ob-
served in Cistecephalus, Kembawacela, and Kawingasaurus; 
however, these cistecephalids differ from Kombuisia in having 
more globular, rather than tubular, cerebral hemispheres (Laaß 
and Kaestner 2017; Araujo et al. 2022b; Macungo et al. 2023). 
Unlike Kombuisia, Niassodon has very narrow hemispheres 
(Castanhinha et al. 2013). The dorsal surface of the endocast 
is smooth as no sagittal sulcus is visible on the olfactory bulbs 
and hemispheres (Fig. 2C1). In contrast, species of Pristerodon, 
Cistecephalus, and Kembawacela have a well-developed sulcus 
that separates the olfactory bulbs medially (Laaß 2015b). A sag-
ittal sulcus splits the cerebral hemispheres in Kawingasaurus 
(Laaß and Kaestner 2017). Posteriorly, the unossified zone is 
small dorsally, and the floccular lobes are so reduced they are 
almost invisible (Fig. 2C). This is similar to the condition in 
Rastodon, Kembawacela, and Gordonia, whereas most other 
dicynodonts have rather prominent floccular lobes (Benoit et 
al. 2017; Araujo et al. 2022; George et al. 2024). The optic 

Fig. 1. Dorsal view of BP/1/9600, dicynodont synapsid Kombuisia frerensis Hotton, 1974, from Luiperdkop (Eastern Cape, South Africa), Burgersdorp 
Formation, Anisian (Middle Triassic). Picture taken at the moment of its discovery by JJ (A1); close up of the sagittal crest area (after preparation) (A2).
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chiasma and hypophyseal fossa are salient ventrally (Fig. 2C2). 
The complete volume of the endocast (including the olfactory 

bulbs) is 2.65 cm3 which, given a body mass of 1317 g, gives a 
SEQ of 1.43. This is about twice as much as in Rastodon (0.72), 
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Fig. 2. Digitally prepared skull and mandible of BP/1/9600, dicynodont synapsid Kombuisia frerensis Hotton, 1974, from Luiperdkop (Eastern Cape, 
South Africa), Burgersdorp Formation, Anisian (Middle Triassic). A. Skull with lower jaw in dorsal (A1) and right lateral (A2) views. B. Occipital view of 
the skull (lower jaw removed). C. Endocast (skull made transparent), in dorsal (C1) and right lateral (C2) views.
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Niassodon (0.81), and Lystrosaurus (0.74), but still within the 
range of dicynodonts, as it is below that of Kawingasaurus 
(2.00) (Benoit et al. 2023). The SEQ value of Kombuisia is most 
similar to that of Pristerodon (1.09) (Benoit et al. 2023).
Stratigraphic and geographic range.—Anisian, Burgersdorp 
Formation, South African Main Karoo Basin.

Discussion
The new specimen of Kombuisia frerensis supports that the ab-
sence of a parietal foramen is a genuine diagnostic character of 
the South African species of this genus. The complete absence 
of a cavity for the pineal body and tube in K. frerensis (Fig. 2C) 
suggests that (i) the foramen had regressed beyond possible 
intraspecific variability (ontogenetic or pathologic, see Benoit 
et al. 2015, 2016; Medina et al. 2025) and (ii) the organ had lost 
its photoreceptive function (Davenport et al. 2014).

Kombuisia antarctica is likely from the Induan, whereas 
K. frerensis is younger, from the early Anisian, which gave 
the latter two to three million years to lose the parietal fora-
men and pineal eye (Fröbisch 2007; Sidor et al. 2023). The 
reasons may be related to the multiple biological functions 
of the pineal eye. The pineal eye is a photoreceptor that can 
only detect light levels (light and darkness), and based on the 
duration of daylight, it regulates hormone secretion by the 
pineal gland (Eakin 1973; Tosini 1997). These hormones are 
involved in synchronising life cycles such as sleep and repro-
duction, but also other functions such as orientation and be-
havioural thermoregulation (Quay 1979; Roth and Roth 1980; 
Foà et al. 2009).

Life in a low light environment may diminish the function 
of the pineal eye, potentially leading to the loss of the pho-
toreceptive organ and its corresponding foramen (Policarpo 
et al. 2021; Benoit et al. 2023). Adaptation to fossoriality, a 
common trait amongst dicynodonts, would render the photo-
receptive function of the pineal eye redundant, making the 
structure expensive to maintain given its low selective value 
(Benoit et al. 2016). For example, Kawingasaurus fossilis was 
uniquely adapted to a low-light environment (i.e., obligate fos-
soriality), which accounts well for the loss of its parietal fo-
ramen (Benoit et al. 2023). The reduced size of the floccular 
fossa in K. frerensis is a character found in fossorial rodents, 
such as mountain beavers (Bertrand et al. 2021), so it is pos-
sible that K. frerensis was fossorial, but there is no evidence 
to suggest that K. antarctica would have been any different 
in this respect. The skulls of both species equally lack the 
adaptations to fossoriality encountered in cistecephalids (Laaß 
2015a). Moreover, modern fossorial reptiles do not tend to lose 
their pineal eye compared to their non fossorial counterparts 
(Gundy and Wurst 1976).

Adaptation to nocturnality may have the same effect (Emer-
ling 2017). There is no sclerotic ring preserved in any of the 
known Kombuisia specimens belonging to both species, to test 
this hypothesis, but given that no dicynodont is reconstructed 
as nocturnal, including Kombuisia’s close relative Emydops 
(Angielczyk and Schmitz 2014), it does not appear likely.

It has long been proposed that endothermy could explain 
the loss of the pineal eye and parietal foramen in synapsids 
(Roth and Roth 1980; Benoit et al. 2016). Some recent isoto-
pic analyses and osteohistological studies even supported that 
Early Triassic dicynodonts may have evolved endothermy, al-
though they did not include Kombuisia (Olivier et al. 2017; 
Rey et al. 2017; Faure-Brac and Cubo 2020; Faure-Brac et al. 
2024). Under this scenario, the absence of a parietal foramen 
in the South African species would imply that K. frerensis had 
a more elevated metabolism than its sister taxon K. antarctica, 
which is unlikely. Future works on the inner ear of the new 
specimen could address this possibility (Araujo et al. 2022a).

The Transantarctic Basin was situated at a higher latitude 
(about 75°S) than the Main Karoo Basin (about 60°S) during the 
Middle Triassic (Zharkov and Chumakov 2001; Romano et al. 
2020). This latitudinal gradient accounts better for the differ-
ing parietal foramen conditions in both species of Kombuisia. 
Modern ectothermic species living at lower latitude rely less 
on behavioural thermoregulation as temperatures are warmer 
on average. In addition, the duration of nights and days is less 
seasonally contrasted in low latitudes, making reliance upon 
these cues by the pineal eye less crucial for monitoring life 
cycles (Gundy et al. 1975; Ralph 1975). As a result, the parietal 
foramen is more often absent in families of squamates that live 
closer to the equator than in their close relatives from higher 
latitudes (Gundy et al. 1975; Ralph 1975). Similarly, rodents 
from higher latitudes have a larger pineal gland (Quay 1980). 
Given that the Transantarctic and Main Karoo basins were 
under two different climatic zones (temperate and arid, respec-
tively) and separated by some 10–15° latitudinal difference in 
the Early Triassic (Zharkov and Chumakov 2001; Romano et 
al. 2020), it has been shown that seasonality had more adverse 
effects on the dicynodonts of Antarctica than those from the 
Karoo (Whitney and Sidor 2020). It is possible that the evolu-
tionary pressure to maintain a parietal foramen and pineal eye 
differed significantly between K. frerensis and K. antarctica. 
Compared to its South African relative, K. antarctica would 
have been exposed to more pronounced seasonal differences in 
sunlight and colder winter days, which are both crucial inputs 
to the pineal gland for timing the reproductive cycle and mon-
itoring behavioural thermoregulatory decisions. Kingoriids al-
ready having a tendency towards reducing or losing their pari-
etal foramen (Kammerer 2019), the pressure for K. frerensis to 
maintain a pineal eye under the lower South African latitudes 
may not have been sufficient.

The degree to which this latitudinal explanation can be 
generalised to other dicynodonts is uncertain given that the 
presence of a pineal foramen is ubiquitous in most other 
Triassic taxa regardless of latitude. In Lystrosaurus and 
Prolacerta, the presence of a parietal foramen is more vari-
able in southern Africa than in Antarctica (Colbert 1987; 
Miller-Camp 2010; Benoit et al. 2016; Spiekman 2018). This 
variability could also be a consequence of the latitudinal 
gradient. Consistently with the above, in the late Permian, 
Kawingasaurus is the cistecephalid with the most northern 
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palaeolatitude and the only one to lose its parietal foramen 
completely (Benoit et al. 2016).

More specimens of Kombuisia and other Triassic taxa rep-
resented by high and low latitude specimens will be neces-
sary to address this hypothesis. As this evolutionary trend is 
observed in modern ectothermic species only, its systematic 
study in Triassic taxa may shed some light on the ongoing de-
bates about the origins of endothermy in synapsids.
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